首页> 外文会议>Symposium on Data visualisation >Adaptive smooth scattered-data approximation for large-scale terrain visualization
【24h】

Adaptive smooth scattered-data approximation for large-scale terrain visualization

机译:适用于大规模地形可视化的自适应平滑散乱数据近似

获取原文

摘要

We present a fast method that adaptively approximates large-scale functional scattered data sets with hierarchical B-splines. The scheme is memory efficient, easy to implement and produces smooth surfaces. It combines adaptive clustering based on quadtrees with piecewise polynomial least squares approximations. The resulting surface components are locally approximated by a smooth B-spline surface obtained by knot removal. Residuals are computed with respect to this surface approximation, determining the clusters that need to be recursively refined, in order to satisfy a prescribed error bound. We provide numerical results for two terrain data sets, demonstrating that our algorithm works efficiently and accurate for large data sets with highly non-uniform sampling densities.
机译:我们提出了一种快速的方法,该方法以分层B样条自适应地近似大规模功能性分散数据集。该方案存储效率高,易于实现,并可以产生光滑的表面。它结合了基于四叉树的自适应聚类和分段多项式最小二乘近似。所得的表面分量由通过去除结点获得的平滑B样条曲面局部近似。针对此表面近似计算残差,以确定需要递归精炼的簇,以满足规定的误差范围。我们提供了两个地形数据集的数值结果,证明了我们的算法对于采样密度非常不均匀的大型数据集有效且准确地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号