首页> 外文会议>Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision >Challenges of vision theory: self-organization of neural mechanisms for stable steering of object-grouping data in visual motion perception
【24h】

Challenges of vision theory: self-organization of neural mechanisms for stable steering of object-grouping data in visual motion perception

机译:视觉理论的挑战:在视觉运动感知中稳定控制对象分组数据的神经机制的自组织

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Psychophysical studies on motion perception suggest that human visual systems perform certain nonlocal operations. In some cases, data about one part of an image can influence the processing or perception of data about another part of the image, across a long spatial range. In others, data about nearby parts of an image can fail to influence one another strongly, despite their proximity. Several types of nonlocal interaction may underlie cortical processing for accurate, stable perception of visual motion, depth, and form: (1) trajectory-specific propagation of computed moving stimulus information to successive image locations where a stimulus is predicted to appear; (2) grouping operations (establishing linkages among perceptually related data); (3) scission operations (breaking linkages between unrelated data); and (4) steering operations, whereby visible portions of a visual group or object can control the representations of invisible or occluded portions of the same group. Nonlocal interactions like these could be mediated by long-range excitatory horizontal intrinsic connections (LEHICs), discovered in visual cortex of several animal species. LEHICs often span great distances across cortical image space. Typically, they have been found to interconnect regions of like specificity with regard to certain receptive field attributes, e.g., stimulus orientation. It has recently been shown that several visual processing mechanisms can self-organize in model recurrent neural networks using unsupervised `EXIN' (excitatory $PLU inhibitory) learning rules. Because the same rules are used in each case, EXIN networks provide a means to unify explanations of how different visual processing modules acquire their structure and function. EXIN networks learn to multiplex (or represent simultaneously) multiple spatially overlapping components of complex scenes, in a context-sensitive fashion. Modeled LEHICs have been used together with the EXIN learning rules to show how visual experience can shape neural mechanisms for nonlocal, context-sensitive processing of visual motion data. !97
机译:摘要:关于运动感知的心理物理学研究表明,人类视觉系统执行某些非局部操作。在某些情况下,有关图像一个部分的数据可能会在很长的空间范围内影响有关图像另一部分的数据的处理或感知。在其他情况下,关于图像附近部分的数据尽管彼此接近,却可能无法互相强烈影响。几种类型的非局部相互作用可能是皮质处理的基础,用于对视觉运动,深度和形式的准确,稳定的感知:(1)特定于轨迹的传播,将计算出的运动刺激信息传播到预计会出现刺激的连续图像位置; (2)分组操作(在感知相关数据之间建立链接); (3)断言操作(断开无关数据之间的链接); (4)操纵操作,视觉组或对象的可见部分可以控制同一组的不可见部分或遮挡部分的表示。像这样的非局部相互作用可以通过在几种动物物种的视觉皮层中发现的远距离兴奋性水平内在联系(LEHIC)来介导。 LEHIC通常跨越皮质图像空间很远。通常,已经发现它们将关于某些感受野属性(例如,刺激取向)的相似特异性的区域互连。最近显示,使用非监督的“ EXIN”(兴奋性$ PLU抑制)学习规则,可以在模型递归神经网络中自组织几种视觉处理机制。由于在每种情况下都使用相同的规则,因此EXIN网络提供了一种统一各种视觉处理模块如何获取其结构和功能的解释的方法。 EXIN网络学习以上下文相关的方式复用(或同时表示)复杂场景的多个空间重叠分量。建模的LEHIC已与EXIN学习规则一起使用,以显示视觉体验如何塑造视觉运动数据的非本地,上下文相关处理的神经机制。 !97

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号