首页> 外文会议>2019 Spring Simulation Conference >Adaptive Particle Sampling and Resampling in Parallel/Distributed Particle Filters
【24h】

Adaptive Particle Sampling and Resampling in Parallel/Distributed Particle Filters

机译:并行/分布式粒子滤波器中的自适应粒子采样和重采样

获取原文
获取原文并翻译 | 示例

摘要

Particle filters have been widely used in estimating the states of dynamic systems by using Bayesian interference and stochastic sampling techniques. Parallel computing techniques were introduced to improve the performance of sequential particle filters with multiple processing units (PUs). However, the unavoidable communications between Pus, lower the performance. The hybrid and adaptive resampling algorithms were proposed to improve the performance of parallel/distributed particle filters by reducing the communication costs without loss of estimation accuracy. In this paper, we propose an adaptive sampling and resampling technique in particle filters. In the proposed algorithm, the number of particle is dynamically adjustable based on the model convergence. As a result, less particles will be used if the current convergence is good and more particles will be used if the convergence is getting bad. The experimental results show the improved performance by using less particles and reducing the communication cost compared with other algorithms.
机译:通过使用贝叶斯干扰和随机采样技术,粒子滤波器已广泛用于估计动态系统的状态。引入了并行计算技术来提高具有多个处理单元(PU)的顺序粒子过滤器的性能。但是,Pus之间不可避免的通信会降低性能。提出了混合和自适应重采样算法,以通过降低通信成本而不损失估计精度来提高并行/分布式粒子滤波器的性能。在本文中,我们提出了一种粒子滤波中的自适应采样和重采样技术。在所提出的算法中,基于模型收敛性,粒子数是动态可调的。结果,如果当前收敛性好,将使用较少的粒子,如果收敛性较差,则将使用更多的粒子。实验结果表明,与其他算法相比,通过使用更少的粒子并降低了通信成本可以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号