首页> 外文会议>Special event on analysis of experimental algorithms >Computing a Minimum Color Path in Edge-Colored Graphs
【24h】

Computing a Minimum Color Path in Edge-Colored Graphs

机译:计算边缘色图中的最小颜色路径

获取原文

摘要

In this paper, we study the problem of computing a min-color path in an edge-colored graph. More precisely, we are given a graph G = (V,E), source s, target t, an assignment x : E → 2~C of edges to a set of colors in C, and we want to find a path from a to t such that the number of unique colors on this path is minimum over all possible s — t paths. We show that this problem is hard (conditionally) to approximate within a factor O(n~(1/8)) of optimum, and give a polynomial time O(n~(2/3))-approximation algorithm. We translate the ideas used in this approximation algorithm into two simple greedy heuristics, and analyze their performance on an extensive set of synthe:tic and real world datasets. From our experiments, we found that our heuristics perform significantly better than the best previous heuristic algorithm for the problem on all datasets, both in terms of path quality and the running time.
机译:在本文中,我们研究了在边缘彩色图中计算最小颜色路径的问题。更准确地说,我们得到一个图G =(V,E),源s,目标t,x的赋值x:E→边缘到C中一组颜色的2〜C,我们想找到一条到t,使得该路径上唯一颜色的数量在所有可能的s-t路径上最小。我们证明这个问题很难(有条件地)在最优因子O(n〜(1/8))内逼近,并给出多项式时间O(n〜(2/3))逼近算法。我们将这种近似算法中使用的思想转化为两个简单的贪婪启发式方法,并在广泛的合成数据集和真实数据集上分析其性能。从我们的实验中,我们发现,在路径质量和运行时间方面,我们的启发式算法在所有数据集上的性能均明显优于以前的最佳启发式算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号