首页> 外文会议>Software Testing Verification and Validation, 2009. ICST '09 >The Effectiveness of Automated Static Analysis Tools for Fault Detection and Refactoring Prediction
【24h】

The Effectiveness of Automated Static Analysis Tools for Fault Detection and Refactoring Prediction

机译:自动静态分析工具对故障检测和重构预测的有效性

获取原文

摘要

Many automated static analysis (ASA) tools have been developed in recent years for detecting software anomalies. The aim of these tools is to help developers to eliminate software defects at early stages and produce more reliable software at a lower cost. Determining the effectiveness of ASA tools requires empirical evaluation. This study evaluates coding concerns reported by three ASA tools on two open source software (OSS) projects with respect to two types of modifications performed in the studied software CVS repositories: corrections of faults that caused failures, and refactoring modifications. The results show that fewer than 3% of the detected faults correspond to the coding concerns reported by the ASA tools. ASA tools were more effective in identifying refactoring modifications and corresponded to about 71% of them. More than 96% of the coding concerns were false positives that do not relate to any fault or refactoring modification.
机译:近年来,已经开发了许多用于检测软件异常的自动静态分析(ASA)工具。这些工具的目的是帮助开发人员在早期阶段消除软件缺陷,并以较低的成本生产更可靠的软件。要确定ASA工具的有效性,需要进行经验评估。这项研究评估了三个ASA工具在两个开源软件(OSS)项目上报告的编码问题,涉及在研究的软件CVS存储库中执行的两种类型的修改:纠正导致故障的故障和重构修改。结果表明,不到3%的检测到的故障对应于ASA工具报告的编码问题。 ASA工具在识别重构修改方面更有效,约占其中的71%。超过96%的编码问题是与任何错误或重构修改无关的误报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号