首页> 外文会议>Soft Computing and Pattern Recognition, 2009. SOCPAR '09 >Finite Difference Recursive Update on Decomposed RBF Networks for System Identification with Lost Packet
【24h】

Finite Difference Recursive Update on Decomposed RBF Networks for System Identification with Lost Packet

机译:分解的RBF网络上的有限差分递归更新,用于丢失数据包的系统识别

获取原文

摘要

Radial Basis Function networks (RBF) is one form of feed forward neural network architecture which is popular besides Multi Layer Preceptor (MLP). It is widely used in identifying a black box system. Finite Difference approach is used to improve the learning performance especially in the non-linear learning parameter update for identifying system with lost packet in online manner. Since initializing of non-linear learningȁ9;s parameters is crucial in RBF networksȁ9; learning, some unsupervised learning methods such as, K-means clustering and Fuzzy C-means clustering are used besides random initialization. All the possible combination methods in the initialization and updating process try to improve the whole performance of the learning process in system identification with lost packet compared to Extreme Learning Machine as the latest improved learning method in RBF network. It can be shown that Finite difference approach with dynamic step size on Decomposed RBF network with Recursive Prediction Error for the non-linear parameter update with appropriate initialization method succeed to perform better performance compared to ELM.
机译:径向基函数网络(RBF)是前馈神经网络体系结构的一种形式,它除了多层感知器(MLP)之外还很流行。它广泛用于识别黑匣子系统。有限差分法用于提高学习性能,特别是在非线性学习参数更新中,用于以在线方式识别丢失数据包的系统。由于非线性学习ȁ9的初始化,在RBF网络ȁ9中至关重要。学习中,除了随机初始化外,还使用了一些无监督的学习方法,例如K均值聚类和Fuzzy C均值聚类。与作为RBF网络中最新的改进学习方法的极限学习机相比,初始化和更新过程中所有可能的组合方法都试图在丢失数据包的系统识别中提高学习过程的整体性能。可以证明,在具有递归预测误差的分解RBF网络上采用动态步长的有限差分方法,通过适当的初始化方法进行非线性参数更新,与ELM相比,具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号