首页> 外文会议>Soft Computing and Pattern Recognition, 2009. SOCPAR '09 >Application of Hybrid Multi-resolution Wavelet Decomposition Method in Detecting Human Walking Gait Events
【24h】

Application of Hybrid Multi-resolution Wavelet Decomposition Method in Detecting Human Walking Gait Events

机译:混合多分辨率小波分解方法在步行步态检测中的应用

获取原文

摘要

Identifying walking gait events is important in gait analysis. In particular, heel-strike and toe-off are commonly used to define the stance phase and swing phase in normal human walking gait cycle. They are used to segment a stream of human motion data into discrete and meaningful sections that can be analyzed and compared with available literatures. This paper proposes multi-resolution wavelet decomposition to reveal relevant information. Subsequently, proposed method differentiates the signal twice to identify the heel-strike and toe-off events. With this information, various temporal gait parameters can be easily estimated, such as the duration of swing phase and stance phase, and the duration of initial double support and terminal double support. Experimental results on the temporal parameters are comparable to the available benchmark data with minimal discrepancies due to the anthropometric properties of the subjects and inconsistent walking speed.
机译:识别步行步态事件在步态分析中很重要。特别是,在正常人的步行步态周期中,通常采用后跟打击和脚趾离开来定义姿势阶段和摆动阶段。它们用于将人类运动数据流划分为离散且有意义的部分,可以对其进行分析并与现有文献进行比较。本文提出了多分辨率小波分解以揭示相关信息。随后,提出的方法对信号进行两次微分,以识别后跟撞击和脚趾离开事件。利用该信息,可以容易地估计各种时间步态参数,例如挥杆阶段和站立阶段的持续时间,以及初始双支撑和终末双支撑的持续时间。由于受试者的人体测量特性和步行速度不一致,因此时间参数的实验结果与可用的基准数据相当,差异最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号