首页> 外文会议>Soft Computing and Pattern Recognition, 2009. SOCPAR '09 >Profile Adaptation in Adaptive Information Filtering: An Immune Inspired Approach
【24h】

Profile Adaptation in Adaptive Information Filtering: An Immune Inspired Approach

机译:自适应信息过滤中的配置文件自适应:一种免疫方法

获取原文

摘要

Within the context of information filtering, learning and adaptation of user profiles is a challenging research area and is, in part, addressed by work in Adaptive Information Filtering (AIF). In order to be effective in a dynamic context, maintaining filtering performance, information filtering systems need to adapt to changes. We argue that artificial immune systems (AIS) exhibit the properties required by AIF, and have the potential to be exploited in the context of AIF. In this paper, we extract general features of immune systems and AIF, based on a principled meta-probe approach. We then propose an architecture for AIF incorporating ideas from AIS. Having such characteristics as adaptability, diversity and self-organised, we argue that AIS have suitable characteristics that are amenable to the task of AIF.
机译:在信息过滤的背景下,学习和适应用户配置文件是一个具有挑战性的研究领域,并且在一定程度上通过自适应信息过滤(AIF)的工作来解决。为了在动态环境中有效并保持过滤性能,信息过滤系统需要适应变化。我们认为,人工免疫系统(AIS)具有AIF所需的特性,并且有可能在AIF的背景下加以利用。在本文中,我们基于有原则的元探针方法提取了免疫系统和AIF的一般特征。然后,我们为AIF提出一种架构,并结合AIS的想法。由于具有适应性,多样性和自组织性等特征,我们认为AIS具有适合AIF任务的合适特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号