首页> 外文会议>Soft Computing and Pattern Recognition, 2009. SOCPAR '09 >Improvement Speed of Fractal Image Compression through Gray Level Difference and Normal Variance
【24h】

Improvement Speed of Fractal Image Compression through Gray Level Difference and Normal Variance

机译:通过灰度差异和正态方差提高分形图像压缩速度

获取原文

摘要

Fractal image encoding is attractive due to its potential high compression ratio, fast decompression and multi-resolution properties. However, the encoding time is computationally intensive. In this paper, a new method is proposed to reduce the encoding time based on computing the gray level difference and normal variance of domain and range blocks. Proposed method only compares those domain blocks whose gray level difference and normal variance (obtained from dividing variance on gray level difference) are higher than those of the range blocks. This method reduces the number of comparisons, and thereby the encoding time considerably, while obtaining good fidelity and compression ratio for the decoded image. Experimental results on standard grayscale images (256´256, 8bit) show that the proposed method yields superior performance over conventional fractal encoding.
机译:分形图像编码因其潜在的高压缩比,快速解压缩和多分辨率特性而具有吸引力。但是,编码时间是计算密集型的。在本文中,提出了一种基于域和范围块的灰度差和正态方差来减少编码时间的新方法。所提出的方法仅比较那些灰度级差和正常方差(通过灰度级差的方差除法获得)高于范围块的域块。这种方法减少了比较次数,从而大大减少了编码时间,同时为解码图像获得了良好的保真度和压缩率。在标准灰度图像(256´256,8位)上的实验结果表明,与传统的分形编码相比,该方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号