首页> 外文会议>Soft Computing and Pattern Recognition, 2009. SOCPAR '09 >Telecommunication Fraud Prediction Using Backpropagation Neural Network
【24h】

Telecommunication Fraud Prediction Using Backpropagation Neural Network

机译:使用反向传播神经网络的电信欺诈预测

获取原文

摘要

Telecommunication fraud prediction in this paper is an interpolation problem that uses the daily telecommunication network services information to analyze and predict the alarm information generated from a detection engine by minimizing false cases. This paper proposed the use of backpropagation neural network (BPNN) to perform telecommunication interpolation based on local telecommunication network services. The backpropagation algorithm is adjusted accordingly to control the speed of obtaining solution. The validation of this method is carried out following a series of experiments to establish the suitable BPNN parameters value for this interpolation problem. 20,000 cases were used and divided suitably into training and testing samples in analyzing the performance of the BPNN network. It is observed that the performance of BPNN in predicting fraud was merely 100% if the threshold value was set to 0.64 and above the predicted value. Consequently, the network model created could be used to analyze fraud risk classification and subsequently, provide contribution to the domain of fraud detection system.
机译:本文中的电信欺诈预测是一个插值问题,它使用每日电信网络服务信息来通过最小化错误案例来分析和预测从检测引擎生成的警报信息。本文提出了使用反向传播神经网络(BPNN)进行基于本地电信网络服务的电信插值。对反向传播算法进行相应调整,以控制求解速度。该方法的验证是在一系列实验之后进行的,以针对该插值问题建立合适的BPNN参数值。在分析BPNN网络的性能时,使用了20,000个案例,并适当地分为训练和测试样本。可以看出,如果将阈值设置为0.64并高于预测值,则BPNN预测欺诈的性能仅为100%。因此,创建的网络模型可用于分析欺诈风险分类,并随后为欺诈检测系统领域做出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号