【24h】

Feature Selection of Radar-Derived Attributes with Linear Programming Support Vector Machines and Branch and Bound Methods

机译:线性规划支持向量机和分支定界法在雷达衍生属性特征选择中的应用

获取原文
获取原文并翻译 | 示例

摘要

Tornado circulation attributes/features derived largely from the National Severe Storms Laboratory Mesocyclone Detection Algorithm have been investigated for their efficacy in distinguishing between mesocyclones that become tornadic from those which do not. One of the largest challenges in this regard is to maintain a high probability of detection while simultaneously minimizing the false alarm rate. In this research, we apply a linear programming support vector machine formulation, based on the L_1 norm, to do feature selection on radar-derived tornado attributes (features). Our approach is evaluated based on the indices of probability of detection, false alarm rate, bias and Heidke skill. The results are compared to those performance indices obtained after applying branch & bound and sequential forward selection procedures.
机译:已经研究了主要源自美国国家强风暴实验室中气旋检测算法的龙卷风环流属性/特征,以区分出旋流的旋流和非旋流的旋流。在这方面最大的挑战之一是要保持较高的检测概率,同时将误报率降到最低。在这项研究中,我们基于L_1范数应用线性规划支持向量机公式,对雷达衍生龙卷风属性(特征)进行特征选择。我们的方法是基于检测概率,错误警报率,偏见和Heidke技能指标进行评估的。将结果与应用分支定界和顺序前向选择过程后获得的性能指标进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号