【24h】

SEQUENTIAL IMAGE ANALYSIS USING PULSE COUPLED NEURAL NETWORKS FOR PRE-PROCESSING

机译:使用脉冲神经网络对图像进行预处理

获取原文
获取原文并翻译 | 示例

摘要

The more friendly communication can be promoted between the human and computer if the function of gesture recognition is implemented to the computer system as the input interface along with the keyboards and mice. We propose a mouse-like function for estimating hand shape from input images with a monocular camera, with which a computer user feels no restraint or awkwardness. Our system involves conversion of sequential images from Cartesian coordinates to log-polar coordinates. Pulse Couple Neural Networks are used to extract the hand region, because PCNN has superior segmentation ability. Recognition of the hand shape is carried out by the competitive neural network using higher order local autocorrelation features of log-polar coordinate space. Mouse-like functions are realized with the hand shape and motion trajectory. Compared to conventional Cartesian coordinates, conversion to log-polar coordinates enables us to reduce image date and computation time, remove the variability by the scaling, and improve antinoise characteristics.
机译:如果将手势识别功能与键盘和鼠标一起作为输入接口实现到计算机系统,则可以促进人与计算机之间更友好的通信。我们提出了一种类似鼠标的功能,用于通过单眼相机从输入图像中估计手形,计算机用户不会感到束缚或笨拙。我们的系统涉及将连续图像从笛卡尔坐标转换为对数极坐标。因为PCNN具有出色的分割能力,所以使用Pulse Couple Neural Networks提取手部区域。手形的识别是通过竞争神经网络使用对数极坐标空间的高阶局部自相关特征进行的。通过手的形状和运动轨迹可以实现类似鼠标的功能。与传统的笛卡尔坐标相比,转换为对数极坐标可使我们减少图像日期和计算时间,通过缩放消除可变性,并改善抗噪特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号