首页> 外文会议>Small-scale robotics: from nano-to-millimeter-sized robotic systems and applications >From Nanohelices to Magnetically Actuated Microdrills: A Universal Platform for Some of the Smallest Untethered Microrobotic Systems for Low Reynolds Number and Biological Environments
【24h】

From Nanohelices to Magnetically Actuated Microdrills: A Universal Platform for Some of the Smallest Untethered Microrobotic Systems for Low Reynolds Number and Biological Environments

机译:从纳米螺旋到电磁微钻:适用于雷诺数和生物环境低的一些最小的束缚微机器人系统的通用平台

获取原文
获取原文并翻译 | 示例

摘要

Building, powering, and operating structures that can navigate complex fluidic environments at the sub-mm scale are challenging. We discuss some of the limitations encountered when translating actuation mechanisms and design-concepts from the macro- to the micro-scale. The helical screw-propeller or drill is a particularly useful geometry at small scales and Reynolds numbers, and is one of the mechanisms employed by microorganisms to swim. The shape necessarily requires three-dimensional fabrication capabilities which become progressively more challenging for smaller sizes. Here, we report our work in building and operating these screw-propellers at different sizes. We cover the length scales from the sub 100 nm to drills that are a few hundred microns in length. We use a known physical deposition method to grow micron-sized magnetic propellers that we can transfer to solutions. We have recently succeeded in extending the fabrication scheme to grow nanohelices, and here we briefly review the technical advances that are needed to grow complex shaped nanoparticles. The microstructures can be actuated by a magnetic field and possible applications of the micro- and nanohelices are briefly discussed. We also present a system of polymeric micro-screws that can be produced by micro-injection molding and that can be wirelessly driven by an external rotating magnetic field through biological phantoms, such as agarose gels with speeds of ~200 μm/s. The molding technique faithfully reproduces features down to a few microns. These microdrills can serve as a model system to study minimally invasive surgical procedures, and they serve as an efficient propeller for wireless microrobots in complex fluids. The fabrication scheme may readily be extended to include medically approved polymers and polymeric drug carriers.
机译:能够在亚毫米级别导航复杂流体环境的建筑,动力和操作结构具有挑战性。我们讨论了将驱动机制和设计概念从宏观尺度转换为微观尺度时遇到的一些局限性。螺旋螺旋桨或钻头在小规模和雷诺数下是一种特别有用的几何形状,并且是微生物游泳的机制之一。形状必然需要三维制造能力,对于较小的尺寸,这将越来越具有挑战性。在这里,我们报告了我们在制造和操作不同尺寸的螺旋桨方面的工作。我们涵盖了从小于100 nm到几百微米长的钻头的长度刻度。我们使用一种已知的物理沉积方法来生长微米级的电磁推进器,然后将其转移到溶液中。我们最近成功地扩展了制造方案以生长纳米螺旋,这里我们简要回顾了生长复杂形状的纳米颗粒所需的技术进步。可以通过磁场来驱动微结构,并且简要讨论了微螺旋和纳米螺旋的可能应用。我们还提出了一种聚合物微螺杆系统,该系统可以通过微注射成型生产,并且可以通过外部旋转磁场通过生物体模(例如琼脂糖凝胶,速度约为200μm/ s)由外部旋转磁场无线驱动。成型技术可以忠实地复制低至几微米的特征。这些微钻可以用作研究微创外科手术程序的模型系统,并且可以用作复杂流体中的无线微机器人的有效推进器。该制造方案可以容易地扩展到包括医学认可的聚合物和聚合物药物载体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号