首页> 外文会议>Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation 2012 >Unsupervised vs. supervised weight estimation for semantic MT evaluation metrics
【24h】

Unsupervised vs. supervised weight estimation for semantic MT evaluation metrics

机译:语义MT评估指标的无监督权重与有监督权重估计

获取原文
获取原文并翻译 | 示例

摘要

We present an unsupervised approach to estimate the appropriate degree of contribution of each semantic role type for semantic translation evaluation, yielding a semantic MT evaluation metric whose correlation with human adequacy judgments is comparable to that of recent supervised approaches but without the high cost of a human-ranked training corpus. Our new unsupervised estimation approach is motivated by an analysis showing that the weights learned from supervised training are distributed in a similar fashion to the relative frequencies of the semantic roles. Empirical results show that even without a training corpus of human adequacy rankings against which to optimize correlation, using instead our relative frequency weighting scheme to approximate the importance of each semantic role type leads to a semantic MT evaluation metric that correlates comparable with human adequacy judgments to previous metrics that require far more expensive human rankings of adequacy over a training corpus. As a result, the cost of semantic MT evaluation is greatly reduced.
机译:我们提出了一种无监督的方法来估计每种语义角色类型对语义翻译评估的适当贡献程度,从而产生一种语义MT评估指标,该指标与人类充分性判断的相关性可与最近的有监督的方法相提并论,但是却没有人类的高昂成本排名的训练语料库。我们的新无监督估计方法受分析的启发,该分析表明,从有监督的训练中学到的权重以与语义角色的相对频率相似的方式分布。实证结果表明,即使没有针对其进行相关性优化的人员充足性排名训练语料库,也可以使用我们的相对频率加权方案来近似每种语义角色类型的重要性,从而得出一种语义MT评估指标,该指标与可与人员充足性判断媲美的相关性以前的指标要求人类在训练语料库上的充分性排名要昂贵得多。结果,语义MT评估的成本大大降低。

著录项

  • 来源
  • 会议地点 Jeju(KR)
  • 作者

    Chi-kiu Lo; Dekai Wu;

  • 作者单位

    HKUST Human Language Technology Center Department of Computer Science and Engineering Hong Kong University of Science and Technology;

    HKUST Human Language Technology Center Department of Computer Science and Engineering Hong Kong University of Science and Technology;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号