首页> 外文会议>SIGNLL conference on computational natural language learning >A Morphology-based Representation Model for LSTM-based Dependency Parsing of Agglutinative Languages
【24h】

A Morphology-based Representation Model for LSTM-based Dependency Parsing of Agglutinative Languages

机译:基于形态学表示方法的基于LSTM的粘连语言依赖性解析

获取原文
获取原文并翻译 | 示例

摘要

We propose two word representation models for agglutinative languages that better capture the similarities between words which have similar tasks in sentences. Our models highlight the morphological features in words and embed morphological information into their dense representations. We have tested our models on an LSTM-based dependency parser with character-based word embeddings proposed by Ballesteros et al. (2015). We participated in the CoNLL 2018 Shared Task on multilingual parsing from raw text to universal dependencies as the BOUN team. We show that our morphology-based embedding models improve the parsing performance for most of the agglutinative languages.
机译:我们为凝集性语言提出了两种单词表示模型,可以更好地捕获句子中具有相似任务的单词之间的相似性。我们的模型突出了单词的形态特征,并将形态信息嵌入到它们的密集表示中。我们已经在基于LSTM的依赖解析器上测试了我们的模型,并使用Ballesteros等人提出的基于字符的单词嵌入。 (2015)。我们作为BOUN团队参加了CoNLL 2018共享任务,涉及从原始文本到通用依赖项的多语言解析。我们表明,基于形态学的嵌入模型可提高大多数凝集语言的解析性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号