首页> 外文会议>SIGNLL conference on computational natural language learning >Joint Learning of POS and Dependencies for Multilingual Universal Dependency Parsing
【24h】

Joint Learning of POS and Dependencies for Multilingual Universal Dependency Parsing

机译:POS和依赖项的联合学习,用于多语言通用依赖项解析

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the system of team LeisureX in the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system predicts the part-of-speech tag and dependency tree jointly. For the basic tasks, including tokenization, lemmatization and morphology prediction, we employ the official baseline model (UDPipe). To train the low-resource languages, we adopt a sampling method based on other rich-resource languages. Our system achieves a macro-average of 68.31% LAS F1 score, with an improvement of 2.51 % compared with the UDPipe.
机译:本文在CoNLL 2018共享任务中描述了LeisureX团队的系统:从原始文本到通用依赖项的多语言解析。我们的系统共同预测词性标签和依赖树。对于基本任务,包括标记化,词形化和形态预测,我们使用官方基准模型(UDPipe)。为了训练资源匮乏的语言,我们采用了一种基于其他资源丰富的语言的抽样方法。我们的系统实现了LAS F1分数的68.31%的宏平均,与UDPipe相比提高了2.51%。

著录项

  • 来源
  • 会议地点 Brussels(BE)
  • 作者单位

    Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China;

    Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China;

    Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China;

    Department of Computer Science and Engineering, Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号