首页> 外文会议>Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII >Fall risks assessment among community dwelling elderly using wearable wireless sensors
【24h】

Fall risks assessment among community dwelling elderly using wearable wireless sensors

机译:使用可穿戴无线传感器的社区居民老年人跌倒风险评估

获取原文
获取原文并翻译 | 示例

摘要

Postural stability characteristics are considered to be important in maintaining functional independence free of falls and healthy life style especially for the growing elderly population. This study focuses on developing tools of clinical value in fall prevention: 1) Implementation of sensors that are minimally obtrusive and reliably record movement data. 2) Unobtrusively gather data from wearable sensors from four community centers 3) developed and implemented linear and non-linear signal analysis algorithms to extract clinically relevant information using wearable technology. In all a total of 100 community dwelling elderly individuals (66 non-fallers and 34 fallers) participated in the experiment. All participants were asked to stand-still in eyes open (EO) and eyes closed (EC) condition on forceplate with one wireless inertial sensor affixed at sternum level. Participants' history of falls had been recorded for last 2 years, with emphasis on frequency and characteristics of falls. Any participant with at least one fall in the prior year were classified as faller and the others as non-faller. The results indicated several key factors/features of postural characteristics relevant to balance control and stability during quite stance and, showed good predictive capability of fall risks among older adults. Wearable technology allowed us to gather data where it matters the most to answer fall related questions, i.e. the community setting environments. This study opens new prospects of clinical testing using postural variables with a wearable sensor that may be relevant for assessing fall risks at home and patient environment in near future.
机译:姿势稳定性特征被认为对于保持功能独立性,防止跌倒和健康的生活方式尤其重要,尤其对于不断增长的老年人口。这项研究的重点是开发在预防跌倒方面具有临床价值的工具:1)实施具有最小干扰性并可靠地记录运动数据的传感器。 2)毫不客气地从四个社区中心的可穿戴传感器中收集数据。3)开发并实施了线性和非线性信号分析算法,以使用可穿戴技术提取临床相关信息。总共有100位社区居住的老年人(66位非摔倒者和34位摔倒者)参加了该实验。要求所有参与者在固定有胸骨水平的一个无线惯性传感器的力板上静静睁眼(EO)和闭眼(EC)。记录了参与者近两年的跌倒历史,重点是跌倒的频率和特征。在前一年中至少有一次跌倒的参与者被归为跌倒者,其他被归为非跌倒者。结果表明,姿势的几个关键因素/特征与挺身过程中的平衡控制和稳定性有关,并且对老年人的跌倒风险具有良好的预测能力。可穿戴技术使我们能够在最重要的地方收集数据,以回答与秋季有关的问题,即社区环境。这项研究为使用姿势变量和可穿戴式传感器的临床测试开辟了新的前景,该传感器可能与评估近期在家中和患者环境中的跌倒风险有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号