首页> 外文会议>Signal processing, sensor fusion, and target recognition XXII >Simultaneous optimization by simulation of iterative deconvolution and noise removal for non-negative data
【24h】

Simultaneous optimization by simulation of iterative deconvolution and noise removal for non-negative data

机译:通过对非负数据进行迭代反卷积和噪声去除来同时优化

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a method by which one can find the optimum iteration numbers for noise removal and deconvolution of sampled data. The method employs the mean squared error, which is the square of the difference between the deconvolution result and the input, for optimization. As an example of the iterative methods of noise removal and deconvolution, the always convergent method of Ioup is used for the simultaneous optimization by simulation research presented in this paper. This method is applied to achieve optimization for two Gaussian impulse response functions, one narrow (rapidly converging) and the other wide (slowly converging). The input function used consists of three narrow peaks selected to give some overlap after convolution with the Gaussian impulse response function. Normal distributed noise is added to the convolution of the input with the impulse response function. A range of signal-to-noise ratio is used to optimize the always convergent iterations for both of these Gaussians. For the narrow Gaussian 15 signal-to-noise ratio cases are studied while for the wide Gaussian 11 signal-to-noise ratios cases are considered. To achieve statistically reliable results 50 noisy data sets are generated for each signal-to-noise ratio case. For a given signal-to-noise ratio case the optimum deconvolution and noise removal iteration numbers are found and tabulated. The tabulated results are given in tables one through three. Once these optimum numbers are found they can be used in an equivalent window in the Fourier transform domain, although the non-negativity constraint can only be applied in the function domain .
机译:本文介绍了一种方法,通过该方法,可以找到用于消除噪声和对采样数据进行反卷积的最佳迭代次数。该方法采用均方误差(即去卷积结果与输入之间的差的平方)进行优化。作为去噪和去卷积迭代方法的一个例子,本文通过仿真研究将Ioup的始终收敛方法用于同时优化。该方法适用于实现两个高斯脉冲响应函数的优化,一个是窄的(快速收敛)而另一个是宽的(缓慢收敛)。所使用的输入函数由三个窄峰组成,这些峰选择为与高斯脉冲响应函数卷积后产生一定的重叠。正态分布的噪声通过脉冲响应函数添加到输入的卷积中。使用一定范围的信噪比来优化这两个高斯算法的始终收敛的迭代。对于窄的高斯,将研究15个信噪比情况,而对于宽的高斯,将研究11个信噪比情况。为了获得统计上可靠的结果,针对每种信噪比情况生成了50个噪声数据集。对于给定的信噪比情况,找到最佳去卷积和噪声去除迭代次数并将其制成表格。表一至表三列出了结果。一旦找到了这些最​​佳数,它们就可以在傅立叶变换域的等效窗口中使用,尽管非负性约束只能应用于函数域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号