首页> 外文会议>Signal processing, sensor fusion, and target recognition XXII >Evaluating Detection and Estimation Capabilities of Magnetometer-Based Vehicle Sensors
【24h】

Evaluating Detection and Estimation Capabilities of Magnetometer-Based Vehicle Sensors

机译:评估基于磁力计的车辆传感器的检测和估计能力

获取原文
获取原文并翻译 | 示例

摘要

In an effort to secure the northern and southern United States borders, MITRE has been tasked with developing Modeling and Simulation (M&S) tools that accurately capture the mapping between algorithm-level Measures of Performance (MOP) and system-level Measures of Effectiveness (MOE) for current/future surveillance systems deployed by the the Customs and Border Protection Office of Technology Innovations and Acquisitions (OTIA). This analysis is part of a larger M&S undertaking. The focus is on two MOPs for magnetometer-based Unattended Ground Sensors (UGS). UGS are placed near roads to detect passing vehicles and estimate properties of the vehicle's trajectory such as bearing and speed. The first MOP considered is the probability of detection. We derive probabilities of detection for a network of sensors over an arbitrary number of observation periods and explore how the probability of detection changes when multiple sensors are employed. The performance of UGS is also evaluated based on the level of variance in the estimation of trajectory parameters. We derive the Cramer-Rao bounds for the variances of the estimated parameters in two cases: when no a priori information is known and when the parameters are assumed to be Gaussian with known variances. Sample results show that UGS perform significantly better in the latter case.
机译:为了确保美国北部和南部边界的安全,MITRE的任务是开发建模和仿真(M&S)工具,以准确捕获算法级性能度量(MOP)和系统级有效性度量(MOE)之间的映射)用于海关和边境保护局技术创新与收购办公室(OTIA)部署的当前/未来监视系统。此分析是大型M&S事业的一部分。重点是针对基于磁力计的无人值守地面传感器(UGS)的两个MOP。 UGS放置在道路附近,以检测经过的车辆并估算车辆轨迹的特性,例如方位和速度。考虑的第一个MOP是检测的可能性。我们推导了任意数量的观察周期内传感器网络的检测概率,并探讨了采用多个传感器时检测概率如何变化。还基于轨迹参数估计中的方差水平来评估UGS的性能。在两种情况下,我们得出估计参数的方差的Cramer-Rao边界:当不知道先验信息时,以及假定参数为具有已知方差的高斯时。样本结果表明,在后一种情况下,UGS的性能明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号