首页> 外文会议>Signal processing, pattern recognition and applications >BAYESIAN ESTIMATION OF TIME-VARYING REGRESSION WITH CHANGING TIME-VOLATILITY FOR DETECTION OF HIDDEN EVENTS IN NONSTATIONARY SIGNALS
【24h】

BAYESIAN ESTIMATION OF TIME-VARYING REGRESSION WITH CHANGING TIME-VOLATILITY FOR DETECTION OF HIDDEN EVENTS IN NONSTATIONARY SIGNALS

机译:随时间变化的时变回归的贝叶斯估计,用于检测非平稳信号中的隐藏事件

获取原文
获取原文并翻译 | 示例

摘要

Problems of signal analysis may be practically always considered as those of recovering some hidden dependences, which are time-varying in the general case. In many situations, the nostationarity mode of the dependence should be expected to change in the observation interval, maybe with some jumps or spikes. In this work, we consider a statistical framework and a family of respective algorithm for time-varying linear regression estimation which preserve essential peculiarities in basically smoothly changing regression coefficients. The method being proposed is simple in tuning and has linear computational complexity with respect to the signal length. In particular, we show how this technique allows to watch the dynamics of the hidden asset composition of an investment portfolio from publicly available data with the purpose of detecting sharp changes in its investment strategy.
机译:实际上,信号分析的问题通常可以看作是恢复某些隐藏的依赖关系的问题,这些依赖关系在通常情况下会随时间变化。在许多情况下,应该期望依存关系的非平稳模式在观察间隔中发生变化,可能会有一些跳跃或尖峰。在这项工作中,我们考虑用于时变线性回归估计的统计框架和各自的算法族,该估计框架在基本平稳地变化的回归系数中保留了基本的特性。所提出的方法调谐简单并且相对于信号长度具有线性计算复杂度。特别是,我们展示了该技术如何允许从公开数据中观察投资组合中隐藏资产构成的动态,以检测其投资策略的急剧变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号