首页> 外文会议>Signal processing, pattern recognition and applications >DEVELOPMENT OF AN ELECTROMYOGRAPHIC CONTROL SYSTEM BASED ON PATTERN RECOGNITION FOR PROSTHETIC HAND APPLICATIONS
【24h】

DEVELOPMENT OF AN ELECTROMYOGRAPHIC CONTROL SYSTEM BASED ON PATTERN RECOGNITION FOR PROSTHETIC HAND APPLICATIONS

机译:基于模式识别的人工手电子控制系统开发

获取原文
获取原文并翻译 | 示例

摘要

Electromyographic control systems, based on pattern recognition, have become an established technique in upper limb prosthetic control. This paper describes the development of a control system that uses pattern information from surface electromyographic signals to control a grip posture of a prosthetic hand. A different hand grip posture is discriminated using fuzzy logic by processing the surface electromyographic from wrist muscles performed at different speeds of contraction. A moving data window of two hundred values is applied to the surface electromyographic data and a new method called moving approximate entropy is used to extract information from the signals. The analyses show differences at three states of contraction (start, middle and end). Also, significant differences were determined at different speeds of contractions. Mean absolute value is also used in the extraction process to increase the performance of the system. The extracted features were then fed to the fuzzy logic classifier and the output is selected appropriately. The experimental result demonstrates the ability of the system to classify the features related to different grip postures.
机译:基于模式识别的肌电控制系统已成为上肢假体控制中的一项成熟技术。本文介绍了一种控制系统的开发,该系统使用来自表面肌电信号的图案信息来控制假手的握持姿势。通过处理以不同收缩速度执行的腕部肌肉的表面肌电图,可以使用模糊逻辑来区分不同的握持姿势。将200个值的移动数据窗口应用于表面肌电图数据,并使用一种称为移动近似熵的新方法从信号中提取信息。分析显示了三种收缩状态(开始,中间和结束)的差异。而且,在不同的收缩速度下确定了显着差异。在提取过程中还使用平均绝对值来提高系统性能。然后将提取的特征输入到模糊逻辑分类器,并适当选择输出。实验结果证明了该系统对与不同握持姿势有关的特征进行分类的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号