首页> 外文会议>Signal processing, pattern recognition and applications ; Computer graphics and imaging >FULL-BODY CT SEGMENTATION USING 3D EXTENSION OF TWO GRAPH-BASED METHODS: A FEASIBILITY STUDY
【24h】

FULL-BODY CT SEGMENTATION USING 3D EXTENSION OF TWO GRAPH-BASED METHODS: A FEASIBILITY STUDY

机译:基于两种图形方法的3D扩展的全身CT分割:可行性研究

获取原文
获取原文并翻译 | 示例

摘要

The paper studies the feasibility of using 3D extensions of two state-of-the-art segmentation techniques, the Statistical Region Merging (SRM) method and the Efficient Graph-based Segmentation (EGS) technique, for automatic anatomy segmentation on clinical 3D CT images. The proposed methods are tested on a dataset of 55 images. The test is for segmentation of eight representative tissues (lungs, stomach, liver, heart, kidneys, spleen, bones and the spinal cord) which are vital for accurate calculation of radiation doses. The results are evaluated using the Dice index, the Hausdorff distance and the H_t index, a measure of border error with tolerance t pixels addressing the uncertainty in the ground truth. The outcome shows that the 3D-SRM method outperforms 3D-EGS and has a great potential to become the method of choice for segmentation of full-body CT images. Using 3D-SRM, the average Dice index, the Hausdorff distance across the 8 tissues, and the H_2 were 0.89,12.5 mm and 0.93, respectively.
机译:本文研究了使用两种最先进的分割技术(统计区域合并(SRM)方法和基于有效图的分割(EGS)技术)的3D扩展在临床3D CT图像上进行自动解剖分割的可行性。所提出的方法在55张图像的数据集上进行了测试。该测试用于对八个代表性组织(肺,胃,肝脏,心脏,肾脏,脾脏,骨骼和脊髓)进行分割,这对于准确计算辐射剂量至关重要。使用Dice指数,Hausdorff距离和H_t指数对结果进行评估,H_t指数是一种边界误差的量度,其公差t像素解决了地面真实情况的不确定性。结果表明,3D-SRM方法优于3D-EGS,并且有很大的潜力成为选择全身CT图像分割的方法。使用3D-SRM,平均Dice指数,横跨8个组织的Hausdorff距离和H_2分别为0.89、12.5 mm和0.93。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号