首页> 外文会议>Signal Processing: Algorithms, Architectures, Arrangements, and Applications >Methods of Enriching The Flow of Information in The Real-Time Semantic Segmentation Using Deep Neural Networks
【24h】

Methods of Enriching The Flow of Information in The Real-Time Semantic Segmentation Using Deep Neural Networks

机译:利用深度神经网络在实时语义分割中丰富信息流的方法

获取原文

摘要

Semantic Segmentation is one of the visual tasks that gained the significant boost in performance in recent years due to the popularization of Convolutional Neural Networks (CNNs). In this paper, we addressed the problem of losing information while changing the size of input images during training neural models. Moreover, our method of downsampling and upsampling could be easily injected into current autoencoder models. We show that without any significant changes in a model architecture it is possible to noticeably improve IoU metric. On popular Cityscapes benchmark, our model is achieving almost 2.5% boost in the accuracy of segmentation in comparison to the widely known ERF model. Additionally, to the ability to real-time usages, we run our network on GPU comparable to NVIDIA Jetson Tx2, what let us implement our algorithm in autonomous vehicles.
机译:由于卷积神经网络(CNN)的普及,语义分割是近年来在性能上获得显着提升的视觉任务之一。在本文中,我们解决了在训练神经模型期间更改输入图像大小时丢失信息的问题。此外,我们的下采样和上采样方法可以轻松地注入当前的自动编码器模型中。我们表明,在模型体系结构中不进行任何重大更改,就可以显着改善IoU指标。根据流行的Cityscapes基准,与广为人知的ERF模型相比,我们的模型的分割准确率提高了近2.5%。此外,为了能够实时使用,我们在与NVIDIA Jetson Tx2相当的GPU上运行我们的网络,这使我们能够在自动驾驶汽车中实现我们的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号