首页> 外文会议>Signal and Data Processing of Small Targets 2005 >A Multiple Model SNR/RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking
【24h】

A Multiple Model SNR/RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking

机译:基于雷达的特征辅助跟踪的多模型SNR / RCS似然比得分

获取原文
获取原文并翻译 | 示例

摘要

Most approaches to data association in target tracking use a likelihood-ratio based score for measurement-to-track and track-to-track matching. The classical approach uses a likelihood ratio based on kinematic data. Feature-aided tracking uses non-kinematic data to produce an "auxiliary score" that augments the kinematic score. This paper develops a non-kinematic likelihood ratio score based on statistical models for the signal-to-noise (SNR) and radar cross section (RCS) for use in narrowband radar tracking. The formulation requires an estimate of the target mean RCS, and a key challenge is the tracking of the mean RCS through significant "jumps" due to aspect dependencies. A novel multiple model approach is used track through the RCS jumps. Three solution are developed: one based on an α-filter, a second based on the median filter, and the third based on an IMM filter with a median pre-filter. Simulation results are presented that show the effectiveness of the multiple model approach for tracking through RCS transitions due to aspect-angle changes.
机译:目标跟踪中数据关联的大多数方法都使用基于似然比的分数进行测量到跟踪和跟踪到跟踪的匹配。经典方法使用基于运动学数据的似然比。特征辅助跟踪使用非运动学数据来产生增加运动学分数的“辅助分数”。本文基于用于信噪比(SNR)和雷达横截面(RCS)的统计模型,开发了用于窄带雷达跟踪的非运动似然比得分。公式化需要对目标平均RCS进行估算,一个关键的挑战是由于方面的依赖性,通过显着的“跳跃”来跟踪平均RCS。一种新颖的多模型方法用于跟踪RCS跳转。开发了三种解决方案:一种基于α滤波器,第二种基于中值滤波器,第三种基于具有中值前置滤波器的IMM滤波器。仿真结果表明,该方法显示了多种模型方法可用于跟踪由于纵横比变化而引起的RCS过渡的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号