首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >Bias compensation for target tracking from range based Maximum Likelihood position estimates
【24h】

Bias compensation for target tracking from range based Maximum Likelihood position estimates

机译:从基于范围的最大似然位置估计中进行目标跟踪的偏差补偿

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates bias compensation for improving the performance of target tracking using range or range difference measurements. We obtain the Maximum Likelihood estimate of the target position at the current instant and pass it to the Kalman filter as observation to obtain the target track. The nonlinear relationship between the target position and measurements creates bias that can degrade significantly the tracker performance. This paper shows that we can accurately estimate the bias and subtract it from the Maximum Likelihood estimate before the Kalman filter is applied. Consequently the bias accumulation is effectively prevented and the tracking accuracy is greatly improved.
机译:本文研究了使用距离或距离差测量来改善目标跟踪性能的偏置补偿。我们获得当前时刻目标位置的最大似然估计,并将其传递给卡尔曼滤波器作为观测以获得目标轨迹。目标位置与测量值之间的非线性关系产生了偏差,该偏差会大大降低跟踪器的性能。本文表明,在应用卡尔曼滤波器之前,我们可以准确估计偏差并从最大似然估计中减去偏差。因此,有效地防止了偏置累积,并且大大提高了跟踪精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号