首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >Distribution-free detection under complex elliptically symmetric clutter distribution
【24h】

Distribution-free detection under complex elliptically symmetric clutter distribution

机译:复杂椭圆对称杂波分布下的无分布检测

获取原文
获取原文并翻译 | 示例

摘要

We study the constant false alarm rate matched subspace detector (CFAR MSD) of a signal observed under additive noise following a complex elliptically symmetric (CES) distribution which include the class of compound-Gaussian (CG) distributions as special cases. We prove that the detector is distribution-free under the null (signal free) hypothesis and derive simple expressions for the probability of detection assuming CG-distributed clutter. The derived theoretical results are then illustrated by contrasting them with the performance of a practical adaptive detector which estimates the shape matrix (normalized clutter covariance matrix) from the set of secondary data using complex Tyler's M-estimator of scatter under small sample lengths. We also prove that the complex Tyler's M-estimator is the maximum likelihood estimator (MLE) of the shape matrix under the assumption that the secondary data are independent random vectors from a possibly different CES distributions but which share the same shape matrix parameter.
机译:我们研究了在复杂的椭圆对称(CES)分布(包括特殊情况下的复合高斯(CG)分布)之后,在加性噪声下观察到的信号的恒定虚警率匹配子空间检测器(CFAR MSD)。我们证明了检测器在零(无信号)假设下是无分布的,并假设CG分布杂波,得出了检测概率的简单表达式。然后,通过将它们与实用的自适应检测器的性能进行对比来说明得出的理论结果,该自适应检测器使用复杂的泰勒M估计散布在小样本长度下,从一组辅助数据中估计形状矩阵(归一化杂波协方差矩阵)。我们还证明,在次要数据是来自可能不同的CES分布但共享相同形状矩阵参数的独立随机矢量的假设下,复数泰勒M估计器是形状矩阵的最大似然估计器(MLE)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号