首页> 外文会议>Semiconductor wafer bonding 11: science, technology, and applications - in honor of ulrich gosele >Developing a Wafer Level Gold - Polysilicon Eutectic Bond Process to Protect Sensitive Electronic Devices
【24h】

Developing a Wafer Level Gold - Polysilicon Eutectic Bond Process to Protect Sensitive Electronic Devices

机译:开发晶圆级金-多晶硅共晶键合工艺以保护敏感的电子设备

获取原文
获取原文并翻译 | 示例

摘要

Wafer bonding techniques can be broadly grouped into direct and intermediate bonding. Direct bonding is based solely on the adhesion of two wafers brought into contact at room temperature and subsequently heated (1). Various techniques (surface activation, electric field application) can be used to improve the results however extreme cleanliness and flatness of the bonding surfaces remain paramount (2). As such the common application of direct bonding is in substrate creation rather than hermetic MEMS sealing. Despite this, groups have demonstrated the technique for sealing (3).rnIntermediate bonding includes all bonding mechanisms that depend on an intermediate layer to join the wafers (4). Forms of intermediate bonding include eutectic, polymer, solder and thermocompression. Thermocompression involves the application of both pressure and temperature to the intermediate layers to form the bond. Gold is a typical choice for the thermocompression intermediate layer; this is primarily due to its corrosion resistance and malleability at temperature (5,6). Aluminium with stringent cleaning techniques has also been demonstrated for thermocompression bonding (7). The main issue with thermocompression bonding is topography constraints and surface cleanliness (8), in addition for larger wafer diameters the bond force / pressure requirements become excessive. Polymer bonding does not find broad usage in hermetic sealing as polymers are not true hermetic materials and gases can diffuse through the intermediate material itself (9). Glass frit on the other hand is a common bond technology however for mechanical purposes wide seal widths are recommended when compared to metallic bonding (10).rnIt is noteworthy that developing a bonding technique also requires a thorough investigation to ensure that the preparation steps are compatible with the component wafers (i.e. a bonding method which requires heavy ion bombardment for surface
机译:晶圆键合技术可以大致分为直接键合和中间键合。直接键合仅基于在室温下接触并随后加热的两个晶圆的粘合力(1)。可以使用各种技术(表面活化,电场施加)来改善结果,但是粘合表面的极端清洁度和平坦度仍然至关重要(2)。因此,直接键合的普遍应用是在基板制造中,而不是在密封的MEMS中。尽管如此,各小组已经证明了密封技术(3)。中间键合包括所有依赖于中间层来连接晶片的键合机制(4)。中间粘结的形式包括共晶,聚合物,焊料和热压。热压涉及对中间层施加压力和温度以形成结合。金是热压中间层的典型选择。这主要是由于其在温度下的耐腐蚀性和延展性(5,6)。具有严格清洁技术的铝也已被证明可用于热压粘合(7)。热压键合的主要问题是形貌限制和表面清洁度(8),此外,对于较大的晶圆直径,键合力/压力要求过高。由于聚合物不是真正的气密材料,并且气体可以扩散通过中间材料本身(9),因此在气密密封中,聚合物粘接并未得到广泛使用。另一方面,玻璃粉是一种常见的粘结技术,但是与金属粘结相比,建议用于机械目的的密封宽度要宽(10).rn值得注意的是,开发粘结技术还需要进行深入研究以确保制备步骤兼容与成分晶圆(即需要对表面进行重离子轰击的键合方法)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号