首页> 外文会议>Second workshop on abusive language online 2018 >Challenges for Toxic Comment Classification: An In-Depth Error Analysis
【24h】

Challenges for Toxic Comment Classification: An In-Depth Error Analysis

机译:有毒评论分类面临的挑战:深度错误分析

获取原文
获取原文并翻译 | 示例

摘要

Toxic comment classification has become an active research field with many recently proposed approaches. However, while these approaches address some of the task's challenges others still remain unsolved and directions for further research are needed. To this end, we compare different deep learning and shallow approaches on a new, large comment dataset and propose an ensemble that outperforms all individual models. Further, we validate our findings on a second dataset. The results of the ensemble enable us to perform an extensive error analysis, which reveals open challenges for state-of-the-art methods and directions towards pending future research. These challenges include missing paradigmatic context and inconsistent dataset labels.
机译:有毒评论分类已成为许多最近提出的方法的活跃研究领域。然而,尽管这些方法解决了任务中的某些挑战,但其他挑战仍未解决,需要进一步研究的方向。为此,我们在一个新的大型评论数据集上比较了不同的深度学习方法和浅层方法,并提出了一个优于所有单个模型的整体。此外,我们在第二个数据集上验证了我们的发现。集成的结果使我们能够进行广泛的错误分析,这揭示了最新方法和未决未来研究方向的挑战。这些挑战包括缺少范式上下文和数据集标签不一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号