首页> 外文会议>Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT >Using Cross-Lingual Explicit Semantic Analysis for Improving Ontology Translation
【24h】

Using Cross-Lingual Explicit Semantic Analysis for Improving Ontology Translation

机译:使用跨语言显式语义分析改善本体翻译

获取原文
获取原文并翻译 | 示例

摘要

Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
机译:语义网旨在允许机器使用本体中包含的显式概念进行推理。通过指向本体,基于语义Web的应用程序可以轻松地进行互操作和共享公共信息。尽管如此,由于大多数在线本体都是英语的一种语言,因此多语言语义应用仍然很少。为了解决这个问题,需要用于本体定位和翻译的技术。然而,由于本体标签往往长度很短并且在语言上与自由文本范例不同,因此传统的机器翻译很难应用于本体。在本文中,我们基于本体中包含的结构良好的概念描述,提出了一种增强本体机器翻译的方法。特别地,我们的方法通过使用跨语言显式语义分析(CLESA)来在基于短语的统计机器翻译(SMT)中基于上下文的歧义化,来利用本体中包含的语义。就我们所知,尚未将CLESA应用于SMT的意义是新颖的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号