【24h】

Carbon Nanotubes for Future Field Electron Emission Devices

机译:用于未来场电子发射设备的碳纳米管

获取原文
获取原文并翻译 | 示例

摘要

Today there is only one mature technology to produce field emitter arrays. This technology is the so-called Spindt type metal microtip process. The drawbacks of the Spindt type process are the expensive production, the critical lifetime in technical vacuum and the high operating voltage. Carbon nanotubes (CNT) can be regarded as the potential second-generation technology to the Spindt type metal microtips. The advantages of CNT are above all a potentially longer lifetime due to chemical inertness and the lower operating voltage due to higher local field enhancement. In the present contribution we show that the field electron emission (FE) of CNT thin films can be accurately described by Fowler-Nordheim tunneling and that the field enhancement factor β influences the emission properties most prominently. Therefore the FE of a CNT thin film can be understood in terms of the local field enhancement β(x,y), which can be determined with scanning anode field emission. To characterize the FE properties of thin film emitters we introduce the concept of the field enhancement distribution function f(β). In this context f(β)·dβ gives the number of emitters on a unit surface with field enhancement factors within the interval [β,β+dβ]. We show that the field enhancement distribution f(β) gives an almost complete characterization of the field emission properties, contrary to the threshold field F_(thr) of thin emitters. Though the fundamental properties of CNT's are very favorable for the use as field emission tips, these properties alone will not guarantee their success in this area. Our investigations clearly show that only a perfect control of the catalytic CNT growth process will result in a successful CNT technology for field emitters, at least for high current applications.
机译:如今,只有一种成熟的技术可以生产场发射器阵列。这项技术是所谓的Spindt型金属微尖端工艺。 Spindt型工艺的缺点是生产成本高,技术真空中的临界寿命和高工作电压。碳纳米管(CNT)可以视为Spindt型金属微尖端的潜在第二代技术。 CNT的优势首先是由于化学惰性而可能更长的使用寿命,以及由于更高的局部电场增强而导致的更低的工作电压。在当前的贡献中,我们表明可以通过Fowler-Nordheim隧穿精确描述CNT薄膜的场电子发射(FE),并且场增强因子β最显着地影响发射特性。因此,可以通过扫描阳极场发射来确定的局部场增强β(x,y)来理解CNT薄膜的FE。为了表征薄膜发射器的FE特性,我们引入了场增强分布函数f(β)的概念。在这种情况下,f(β)·dβ给出单位表面上具有在[β,β+dβ]范围内的场增强因子的发射器数量。我们表明,与薄发射极的阈值场F_(thr)相反,场增强分布f(β)几乎完全表征了场发射特性。尽管CNT的基本特性非常适合用作场发射尖端,但仅这些特性并不能保证其在该领域的成功。我们的研究清楚地表明,只有完美地控制催化CNT的生长过程,才能成功地将CNT技术应用于场发射器,至少在大电流应用中如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号