首页> 外文会议>Second International Conference on Advanced Computing, Networking and Security >A Modified Local Least Squares-Based Missing Value Estimation Method in Microarray Gene Expression Data
【24h】

A Modified Local Least Squares-Based Missing Value Estimation Method in Microarray Gene Expression Data

机译:一种改进的基于最小二乘的基因表达数据缺失值估计方法

获取原文
获取原文并翻译 | 示例

摘要

Micro array gene expression data often contains missing values normally due to various experimental reasons. However, most of the gene expression data analysis algorithms, such as clustering, classification and network design, require a complete matrix of gene array during analysis. It is therefore very important to accurately impute the missing values before applying the data analysis algorithms. In this paper, a modified Local Least Square imputation based algorithm known as NSLLSimpute has been introduced which overcomes the drawbacks of previously developed LLSimpute and SLLSimpute algorithms. The performance of NSLLSimpute algorithm is compared with the most commonly used imputation methods like K-nearest neighbor imputation (KNNimpute), Sequential K-nearest neighbor imputation (SKNNimpute), Iterative K-nearest neighbor imputation (IKNNimpute), Singular Value Decomposition (SVDimpute), Local Least Squares imputation (LLSimpute) and Sequential Local Least Squares imputation (SLLSimpute) in terms estimation accuracy using Root Mean Square error when applied on four publicly available micro array data sets over different rates of randomly introduced missing entries.
机译:由于各种实验原因,微阵列基因表达数据通常包含缺失值。但是,大多数基因表达数据分析算法(例如聚类,分类和网络设计)在分析过程中都需要完整的基因阵列矩阵。因此,在应用数据分析算法之前准确估算缺失值非常重要。在本文中,引入了一种改进的基于局部最小二乘归因的算法,称为NSLLSimpute,它克服了以前开发的LLSimpute和SLLSimpute算法的缺点。将NSLLSimpute算法的性能与最常用的插补方法(例如K最近邻插补(KNNimpute),顺序K最近邻插补(SKNNimpute),迭代K最近邻插补(IKNNimpute),奇异值分解(SVDimpute)进行了比较,局部最小二乘法插值(LLSimpute)和顺序局部最小二乘插值(SLLSimpute),在将四个均可用的微阵列数据集应用于随机引入的缺失条目的不同比率时,使用均方根误差来估计准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号