首页> 外文会议>Scandinavian Workshop on Algorithm Theory; 20060706-08; Riga(LV) >Improved Algorithms for Quantum Identification of Boolean Oracles
【24h】

Improved Algorithms for Quantum Identification of Boolean Oracles

机译:布尔Oracle量子识别的改进算法

获取原文
获取原文并翻译 | 示例

摘要

The oracle identification problem (OIP) was introduced by Ambainis et al.. It is given as a set S of M oracles and a blackbox oracle f. Our task is to figure out which oracle in S is equal to the black-box f by making queries to f. OIP includes several problems such as the Grover Search as special cases. In this paper, we improve the algorithms in [3] by providing a mostly optimal upper bound of query complexity for this problem: (ⅰ) For any oracle set S such that ∣S∣ ≤ 2~(N~d) (d < 1), we design an algorithm whose query complexity is O((N log M/log N)~(1/2)), matching the lower bound proved in [3]. (ⅱ) Our algorithm also works for the range between 2~(N~d) and 2~(N/log N) (where the bound becomes O(N)), but the gap between the upper and lower bounds worsens gradually. (ⅲ) Our algorithm is robust, namely, it exhibits the same performance (up to a constant factor) against the noisy oracles as also shown in the literatures for special cases of OIP.
机译:甲骨文识别问题(OIP)由Ambainis等人引入。它以M个甲骨文的集合S和黑盒甲骨文f给出。我们的任务是通过对f进行查询来找出S中的哪个oracle等于黑盒f。 OIP包括一些问题,例如特殊情况下的Grover Search。在本文中,我们通过为该问题提供查询复杂度的最佳最佳上限来改进[3]中的算法:(ⅰ)对于任何Oracle集S使得∣S∣≤2〜(N〜d)(d < 1),我们设计了一种算法,其查询复杂度为O((N log M / log N)〜(1/2)),与[3]中证明的下限匹配。 (ⅱ)我们的算法也适用于2〜(N〜d)和2〜(N / log N)之间的范围(其中界限变为O(N)),但是上下界限之间的差距逐渐变大。 (ⅲ)我们的算法是鲁棒的,即,它针对嘈杂的预言表现出相同的性能(直到一个恒定的因子),这也与针对OIP特殊情况的文献所显示的一样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号