首页> 外文会议>Scale Space and Variational Methods in Computer Vision; Lecture Notes in Computer Science; 4485 >Solving the Chan-Vese Model by a Multiphase Level Set Algorithm Based on the Topological Derivative
【24h】

Solving the Chan-Vese Model by a Multiphase Level Set Algorithm Based on the Topological Derivative

机译:基于拓扑导数的多相能级集算法求解Chan-Vese模型

获取原文
获取原文并翻译 | 示例

摘要

In this work, we specifically solve the Chan-Vese active contour model by multiphase level set methods. We first develop a fast algorithm based on calculating the variational energy of the Chan-Vese model without the length term. We check whether the energy decreases or not when we move a point to another segmented region. Then we draw a connection between this algorithm and the topological derivative, a concept emerged from the shape optimization field. Furthermore, to include the length term of the Chan-Vese model, we apply a preprocessing step on the image by using nonlinear diffusion. We show numerical experiments to demonstrate the efficiency and the robustness of our algorithm.
机译:在这项工作中,我们通过多阶段水平集方法专门解决了Chan-Vese活动轮廓模型。我们首先基于计算没有长度项的Chan-Vese模型的变异能量来开发一种快速算法。我们检查将点移动到另一个分段区域时能量是否减少。然后,我们在此算法与拓扑派生之间建立了联系,从形状优化领域出现了一个概念。此外,为了包括Chan-Vese模型的长度项,我们通过使用非线性扩散对图像应用了预处理步骤。我们展示了数值实验来证明我们算法的效率和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号