首页> 外文会议>Satellite data compression, communications, and processing X >A Stereo Remote Sensing Feature Selection Method Based on Artificial Bee Colony Algorithm
【24h】

A Stereo Remote Sensing Feature Selection Method Based on Artificial Bee Colony Algorithm

机译:基于人工蜂群算法的立体遥感特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.
机译:为了提高立体信息的遥感分类效率,提出了一种基于人工蜂群算法的立体遥感特征选择方法。可以通过数字表面模型(DSM)和光学图像描述遥感立体信息,它们分别包含三维结构信息和光学特性。首先,可以通过3D-Zernike描述符(3DZD)分析三维结构特征。但是,不同的3DZD参数可以描述三维结构的不同复杂度,因此需要针对地面上的各种对象进行更好的优化选择。其次,代表光学特性的特征也需要优化。如果处理不当,当立体特征向量由3DZD和图像特征组成时,将是很多冗余信息,并且这些冗余信息可能无法提高分类精度,甚至会带来不利影响。为了在保持或提高分类精度的同时减少信息冗余,针对该立体特征选择问题创建了优化帧,并引入了人工蜂群算法来解决该优化问题。实验结果表明,该方法可以有效提高计算效率,提高分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号