首页> 外文会议>Satellite data compression, communications, and processing IX >Hyperspectral Image Compression and Target Detection Using Nonlinear Principal Component Analysis
【24h】

Hyperspectral Image Compression and Target Detection Using Nonlinear Principal Component Analysis

机译:基于非线性主成分分析的高光谱图像压缩和目标检测

获取原文
获取原文并翻译 | 示例

摘要

The widely used principal component analysis (PCA) is implemented in nonlinear by an auto-associative neural network. Compared to other nonlinear versions, such as kernel PCA, such a nonlinear PCA has explicit encoding and decoding processes, and the data can be transformed back to the original space. Its data compression performance is similar to that of PCA, but data analysis performance such as target detection is much better. To expedite its training process, graphics computing unit (GPU)-based parallel computing is applied.
机译:广泛使用的主成分分析(PCA)通过自动关联神经网络以非线性方式实现。与其他非线性版本(例如内核PCA)相比,此类非线性PCA具有显式的编码和解码过程,并且可以将数据转换回原始空间。它的数据压缩性能与PCA相似,但是数据分析性能(例如目标检测)要好得多。为了加快其训练过程,应用了基于图形计算单元(GPU)的并行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号