首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >Reduction of Categorical and Numerical Attribute Values for Understandability of Data and Rules
【24h】

Reduction of Categorical and Numerical Attribute Values for Understandability of Data and Rules

机译:减少分类和数值属性值以提高数据和规则的可理解性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss attribute-value reduction for raising up the understandability of data and rules. In the traditional "reduction" sense, the goal is to find the smallest number of attributes such that they enable us to discern each tuple or each decision class. However, once we pay attention also to the number of attribute values, that is, the size/resolution of each attribute domain, another goal appears. An interesting question is like, which one is better in the following two situations 1) we can discern individual tuples with a single attribute described in fine granularity, and 2) we can do this with a few attributes described in rough granularity. Such a question is related to understandability and Kansei expression of data as well as rules. We propose a criterion and an algorithm to find near-optimal solutions for the criterion. In addition, we show some illustrative results for some databases in UCI repository of machine learning databases.
机译:在本文中,我们讨论了减少属性值以提高数据和规则的可理解性。在传统的“约简”意义上,目标是找到最少数量的属性,以使它们能够区分每个元组或每个决策类。但是,一旦我们还关注属性值的数量,即每个属性域的大小/分辨率,就会出现另一个目标。一个有趣的问题是,在以下两种情况下哪个更好:1)我们可以使用细粒度描述的单个属性来辨别单个元组,并且2)我们可以使用粗粒度描述的几个属性来做到这一点。这样的问题与数据的可理解性和关西表达以及规则有关。我们提出了一个准则和一种算法,以寻找该准则的最佳解。此外,我们在机器学习数据库的UCI存储库中显示了一些数据库的一些说明性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号