首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering with Automatic Model Selection
【24h】

A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering with Automatic Model Selection

机译:具有自动模型选择的高斯混合聚类的批次竞争惩罚EM算法

获取原文
获取原文并翻译 | 示例

摘要

Cheung [2] has recently proposed a general learning framework, namely Maximum Weighted Likelihood (MWL), in which an adaptive Rival Penalized EM (RPEM) algorithm has been successfully developed for density mixture clustering with automatic model selection. Nevertheless, its convergence speed relies on the value of learning rate. In general, selection of an appropriate learning rate is a nontrivial task. To circumvent such a selection, this paper further studies the MWL learning framework, and develops a batch RPEM algorithm accordingly provided that all observations are available before the learning process. Compared to the adaptive RPEM algorithm, this batch RPEM need not assign the learning rate analogous to the EM, but still preserve the capability of automatic model selection. Further, the convergence speed of this batch RPEM is faster than the EM and the adaptive RPEM. The experiments show the efficacy of the proposed algorithm.
机译:Cheung [2]最近提出了一个通用的学习框架,即最大加权似然(MWL),其中已成功开发了一种自适应Rival Penalized EM(RPEM)算法,用于具有自动模型选择的密度混合聚类。然而,其收敛速度取决于学习率的值。通常,选择合适的学习率是一项艰巨的任务。为了避免这种选择,本文进一步研究了MWL学习框架,并在学习过程之前所有观察都可用的情况下,开发了批处理RPEM算法。与自适应RPEM算法相比,此批RPEM无需分配类似于EM的学习率,但仍保留了自动模型选择的能力。此外,此批RPEM的收敛速度比EM和自适应RPEM快。实验证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号