【24h】

Rule Induction for Prediction of MHC II-Binding Peptides

机译:MHC II结合肽的预测规则诱导。

获取原文
获取原文并翻译 | 示例

摘要

Prediction of MHC (Major Histocompatibility Complex) binding peptides is prerequisite for understanding the specificity of T-cell mediated immunity. Most prediction methods hardly acquire understandable knowledge. However, comprehensibility is one of the important requirements of reliable prediction systems of MHC binding peptides. Thereupon, SRIA (Sequential Rule Induction Algorithm) based on rough set was proposed to acquire understandable rules. SRIA comprises CARIE (Complete Information-Entropy-based Attribute Reduction algorithm) and ROAVRA (Renovated Orderly Attribute Value Reduction algorithm). In an application example, SRIA, CRIA (Conventional Rule Induction Algorithm) and BPNN (Back Propagation Neural Networks) were applied to predict the peptides that bind to HLA-DR4(B 1*0401). The results show the rules generated with SRIA are better than those with CRIA in prediction performance. Meanwhile, SRIA, which is comparable with BPNN in prediction accuracy, is superior to BPNN in understandability.
机译:MHC(主要组织相容性复合体)结合肽的预测是了解T细胞介导的免疫特异性的前提。大多数预测方法很难获得可理解的知识。然而,可理解性是MHC结合肽的可靠预测系统的重要要求之一。因此,提出了基于粗糙集的SRIA(顺序规则归纳算法)以获取可理解的规则。 SRIA包括CARIE(基于完全信息熵的属性约简算法)和ROAVRA(翻新的有序属性值约简算法)。在一个应用示例中,SRIA,CRIA(常规规则归纳算法)和BPNN(反向传播神经网络)被用于预测与HLA-DR4(B 1 * 0401)结合的肽。结果表明,SRIA生成的规则在预测性能方面优于CRIA。同时,SRIA的预测准确性可与BPNN媲美,在可理解性方面优于BPNN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号