首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >An Approach for Selective Ensemble Feature Selection Based on Rough Set Theory
【24h】

An Approach for Selective Ensemble Feature Selection Based on Rough Set Theory

机译:基于粗糙集理论的选择性合奏特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Rough set based knowledge reduction is an important method for feature selection. Ensemble methods are learning algorithms that construct a set of base classifiers and then classify new objects by integrating the prediction of the base classifiers. In this paper, an approach for selective ensemble feature selection based on rough set theory is proposed, which meets the tradeoff between the accuracy and diversity of base classifiers. In our simulation experiments on the UCI datasets, high recognition rates are resulted.
机译:基于粗糙集的知识约简是特征选择的重要方法。集成方法是学习算法,该算法构造一组基础分类器,然后通过集成基础分类器的预测对新对象进行分类。本文提出了一种基于粗糙集理论的选择性集成特征选择方法,该方法可以满足基本分类器的精度和多样性之间的权衡。在我们对UCI数据集的仿真实验中,得到了很高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号