首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >Improved Quantum-Inspired Genetic Algorithm Based Time-Frequency Analysis of Radar Emitter Signals
【24h】

Improved Quantum-Inspired Genetic Algorithm Based Time-Frequency Analysis of Radar Emitter Signals

机译:基于改进的量子启发遗传算法的雷达辐射源信号时频分析

获取原文
获取原文并翻译 | 示例

摘要

This paper uses an improved quantum-inspired genetic algorithm (IQGA) based time-frequency atom decomposition to analyze the construction of radar emitter signals. With time-frequency atoms containing the detailed characteristics of a signal, this method is able to extract specific information from radar emitter signals. As IQGA has good global search capability and rapid convergence, this method can obtain time-frequency atoms of radar emitter signals in a short span of time. Binary phase shift-key radar emitter signal and linear-frequency modulated radar emitter signal are taken for examples to analyze the structure of decomposed time-frequency atoms and to discuss the difference between the two signals. Experimental results show the huge potential of extracting fingerprint features of radar emitter signals.
机译:本文使用一种基于量子启发遗传算法(IQGA)的改进的时频原子分解来分析雷达发射器信号的构造。利用包含信号详细特征的时频原子,该方法能够从雷达发射器信号中提取特定信息。由于IQGA具有良好的全局搜索能力和快速收敛性,因此该方法可以在短时间内获得雷达发射器信号的时频原子。以二进制相移键控雷达发射器信号和线性调频雷达发射器信号为例,分析了时频原子的分解结构,并讨论了两者的区别。实验结果表明,提取雷达发射器信号指纹特征具有巨大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号