首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >Using Rough Set Theory to Induce Pavement Maintenance and Rehabilitation Strategy
【24h】

Using Rough Set Theory to Induce Pavement Maintenance and Rehabilitation Strategy

机译:用粗糙集理论推导路面养护与修复策略

获取原文
获取原文并翻译 | 示例

摘要

Rough Set Theory (RST) is an induction based decision-making technique, which can extract useful information from attribute-value (decision) table. This study introduces RST into pavement management system (PMS) for maintenance and rehabilitation (M&R) strategy induction. An empirical study is conducted by using the pavement distress data collected from 7 county roads by experienced pavement engineers of Taiwan Highway Bureau (THB). For each road section, the severity and coverage of existing distresses and required M&R treatment were separately recorded. The analytical database consisting of 2,348 records (2,000 records for rule induction, and 348 records for rule testing) are established to induce M&R strategies. On the basis of the testing results, total accuracy and total coverage for the induced strategies are as high as 88.7% and 84.2% respectively, which illustrates that RST certainly can reduce distress types and remove redundant records to induce the proper M&R strategies.
机译:粗糙集理论(RST)是一种基于归纳的决策技术,可以从属性值(决策)表中提取有用的信息。这项研究将RST引入了路面管理系统(PMS),以进行维护和修复(M&R)策略。利用台湾公路局(THB)经验丰富的路面工程师从7条县道收集的路面遇险数据进行了实证研究。对于每个路段,分别记录现有遇险的严重程度和覆盖范围以及所需的M&R处理。建立了由2,348条记录(2,000条记录用于规则归纳,348条记录用于规则测试)组成的分析数据库,以引入M&R策略。根据测试结果,诱导策略的总准确率和总覆盖率分别高达88.7%和84.2%,这说明RST当然可以减少遇险类型并删除多余的记录以诱导适当的M&R策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号