首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >Ranking by Rough Approximation of Preferences for Decision Engineering Applications
【24h】

Ranking by Rough Approximation of Preferences for Decision Engineering Applications

机译:对于决策工程应用程序,按偏好的粗略排序进行排名

获取原文
获取原文并翻译 | 示例

摘要

A pulping process is studied to illustrate a new methodology in the field of decision engineering, which relies on the Dominance Rough-Set-based Approach (DRSA) to determine the optimal operating region. The DRSA performs a rough approximation of preferences on a small set of Pareto-optimal experimental points to infer the decision rules with and without considering thresholds of indifference with respect each attribute in the decision table. With thresholds of indifference, each rule can be represented by three discrete values (i.e. 0; 0.5; 1). A value of (1) indicates the first point, in a pair wise comparison, is strictly preferred to the second point from the Pareto domain. A value of (0) indicates the opposite relation whereas a value of (0.5) indicates that the two points are equivalent from an engineering point of view. These decision rules are then applied to the entire set of points representing the Pareto domain. The results show that the rules obtained with the indifference thresholds improve the quality of approximation.
机译:对制浆过程进行了研究,以说明决策工程领域中的一种新方法,该方法依赖于基于优势粗糙集的方法(DRSA)来确定最佳操作区域。 DRSA在一小部分帕累托最优实验点上执行偏好的粗略近似,以推断决策规则,而无需考虑相对于决策表中每个属性的冷漠阈值。有了无差异的阈值,每个规则可以由三个离散值(即0; 0.5; 1)表示。值(1)表示在成对比较中,第一个点绝对是Pareto域中第二个点的首选。值(0)表示相反的关系,而值(0.5)表示从工程学角度来看,这两个点是等效的。然后将这些决策规则应用于代表Pareto域的整个点集。结果表明,用无差异阈值获得的规则提高了近似质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号