首页> 外文会议>Rough Sets and Intelligent Systems Paradigms >Meta-learning: Can It Be Suitable to Automatise the KDD Process for the Educational Domain?
【24h】

Meta-learning: Can It Be Suitable to Automatise the KDD Process for the Educational Domain?

机译:元学习:适合教育领域的KDD流程自动化吗?

获取原文
获取原文并翻译 | 示例

摘要

The use of e-learning platforms is practically generalised in all educational levels. Even more, virtual teaching is currently acquiring a great relevance never seen before. The information that these systems record is a wealthy source of information that once it is suitably analised, allows both, instructors and academic authorities to make more informed decisions. But, these individuals are not expert in data mining techniques, therefore they require tools which automatise the KDD process and, the same time, hide its complexity. In this paper, we show how meta-learning can be a suitable alternative for selecting the algorithm to be used in the KDD process, which will later be wrapped and deployed as a web service, making it easily accessible to the educational community. Our case study focuses on the student performance prediction from the activity performed by the students in courses hosted in Moodle platform.
机译:电子学习平台的使用在所有教育水平上都得到了普遍推广。更重要的是,虚拟教学目前正具有前所未有的重要意义。这些系统记录的信息是丰富的信息来源,一旦对其进行了适当的分析,就可以使教师和学术机构做出更明智的决定。但是,这些人不是数据挖掘技术的专家,因此他们需要使KDD流程自动化并隐藏其复杂性的工具。在本文中,我们展示了元学习如何成为选择KDD流程中使用的算法的合适替代方法,该算法随后将被包装和部署为Web服务,从而使教育社区可以轻松访问它。我们的案例研究着重于根据学生在Moodle平台上举办的课程中的活动所进行的学生表现预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号