首页> 外文会议>Rough Sets, fuzzy sets, data mining and granular computing >An Efficient Gene Selection Algorithm Based on Tolerance Rough Set Theory
【24h】

An Efficient Gene Selection Algorithm Based on Tolerance Rough Set Theory

机译:基于容差粗糙集理论的高效基因选择算法

获取原文
获取原文并翻译 | 示例

摘要

Gene selection, a key procedure of the discriminant analysis of microarray data, is to select the most informative genes from the whole gene set. Rough set theory is a mathematical tool for further reducing redundancy. One limitation of rough set theory is the lack of effective methods for processing real-valued data. However, most of gene expression data sets are continuous. Discretization methods can result in information loss. This paper investigates an approach combining feature ranking together with feature selection based on tolerance rough set theory. Compared with gene selection algorithm based on rough set theory, the proposed method is more effective for selecting high discriminative genes in cancer classification task.
机译:基因选择是微阵列数据判别分析的关键程序,它是从整个基因集中选择信息最丰富的基因。粗糙集理论是进一步减少冗余的数学工具。粗糙集理论的局限性之一是缺乏有效的方法来处理实值数据。但是,大多数基因表达数据集是连续的。离散化方法可能会导致信息丢失。本文研究了一种基于容差粗糙集理论的特征排序与特征选择相结合的方法。与基于粗糙集理论的基因选择算法相比,该方法在癌症分类任务中选择高判别基因更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号