首页> 外文会议>Research in computational molecular biology >Protein Loop Closure Using Orientational Restraints from NMR Data
【24h】

Protein Loop Closure Using Orientational Restraints from NMR Data

机译:使用NMR数据中的方向约束来封闭蛋白环

获取原文
获取原文并翻译 | 示例

摘要

Protein loops often play important roles in biological functions such as binding, recognition, catalytic activities and allosteric regulation. Modeling loops that are biophysically sensible is crucial to determining the functional specificity of a protein. A variety of algorithms ranging from robotics-inspired inverse kinematics methods to fragment-based homology modeling techniques have been developed to predict protein loops. However, determining the 3D structures of loops using global orientational restraints on internuclear vectors, such as those obtained from residual dipolar coupling (RDC) data in solution Nuclear Magnetic Resonance (NMR) spectroscopy, has not been well studied. In this paper, we present a novel algorithm that determines the protein loop conformations using a minimal amount of RDC data. Our algorithm exploits the interplay between the sphero-conics derived from RDCs and the protein kinematics, and formulates the loop structure determination problem as a system of low-degree polynomial equations that can be solved exactly and in closed form. The roots of these polynomial equations, which encode the candidate conformations, are searched systematically, using efficient and provable pruning strategies that triage the vast majority of conformations, to enumerate or prune all possible loop conformations consistent with the data. Our algorithm guarantees completeness by ensuring that a possible loop conformation consistent with the data is never missed. This data-driven algorithm provides a way to assess the structural quality from experimental data with minimal modeling assumptions. We applied our algorithm to compute the loops of human ubiquitin, the FF Domain 2 of human transcription elongation factor CA150 (FF2), the DNA damage inducible protein I (DinI) and the third IgG-binding domain of Protein G (GB3) from experimental RDC data. A comparison of our results versus those obtained by using traditional structure determination protocols on the same data shows that our algorithm is able to achieve higher accuracy: a 3- to 6-fold improvement in backbone RMSD. In addition, computational experiments on synthetic RDC data for a set of protein loops of length 4, 8 and 12 used in previous studies show that, whenever sparse RDCs can be measured, our algorithm can compute longer loops with high accuracy. These results demonstrate that our algorithm can be successfully applied to compute loops with high accuracy from a limited amount of NMR data. Our algorithm will be useful to determine high-quality complete protein backbone conformations, which will benefit the nuclear Overhauser effect (NOE) assignment process in high-resolution protein structure determination.
机译:蛋白质环通常在生物学功能中发挥重要作用,例如结合,识别,催化活性和变构调节。对生物物理敏感的建模环对于确定蛋白质的功能特异性至关重要。已经开发了各种各样的算法来预测机器人的蛋白质环,从机器人技术启发的逆运动学方法到基于片段的同源性建模技术。但是,尚未对利用核间矢量的整体方向约束(例如从溶液核磁共振(NMR)光谱中的残留偶极耦合(RDC)数据获得的约束)确定环的3D结构进行研究。在本文中,我们提出了一种新颖的算法,该算法使用最少的RDC数据来确定蛋白质环构象。我们的算法利用了从RDC派生的圆锥体与蛋白质运动学之间的相互作用,并将环路结构确定问题表述为一个可以精确且封闭地求解的低次多项式方程组。使用有效且可证明的修剪策略(对大多数构象进行分类),系统地搜索这些编码候选构象的多项式方程式的根,以枚举或修剪与数据一致的所有可能的环构象。我们的算法通过确保不会遗漏与数据一致的可能循环构象来确保完整性。该数据驱动算法提供了一种以最少的建模假设从实验数据评估结构质量的方法。我们应用了算法来计算人遍在蛋白的环,人转录延伸因子CA150的FF域2(FF2),DNA损伤诱导蛋白I(DinI)和蛋白G的第三个IgG结合结构域(GB3) RDC数据。将我们的结果与使用传统结构确定协议在相同数据上获得的结果进行比较,结果表明我们的算法能够实现更高的准确性:主干RMSD提升了3到6倍。此外,先前研究中使用的一组长度为4、8和12的蛋白质环的合成RDC数据的计算实验表明,每当可以测量稀疏RDC时,我们的算法都可以高精度地计算更长的环。这些结果表明,我们的算法可以成功地用于从有限的NMR数据中高精度地计算环。我们的算法将有助于确定高质量的完整蛋白质骨架构象,这将有助于高分辨率蛋白质结构确定中的核Overhauser效应(NOE)分配过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号