【24h】

Identification of Deletion Polymorphisms from Haplotypes

机译:单倍型缺失多态性的鉴定

获取原文
获取原文并翻译 | 示例

摘要

Numerous efforts are underway to catalog genetic variation in human populations. While the majority of studies of genetic variation have focused on single base pair differences between individuals, i.e. single nucleotide polymorphisms (SNPs), several recent studies have demonstrated that larger scale structural variation including copy number polymorphisms and inversion polymorphisms are also common. However, direct techniques for detection and validation of structural variants are generally much more expensive than detection and validation of SNPs. For some types of structural variation, in particular deletions, the polymorphism produces a distinct signature in the SNP data. In this paper, we describe a new probabilistic method for detecting deletion polymorphisms from SNP data. The key idea in our method is that we estimate the frequency of the haplotypes in a region of the genome both with and without the possibility of a deletion in the region and apply a generalized likelihood ratio test to assess the significance of a deletion. Application of our method to the HapMap Phase I data revealed 319 candidate deletions, 142 of these overlap with variants identified in earlier studies, while 177 are novel. Using Phase II HapMap data we predict 6730 deletions.
机译:目前正在进行许多工作以对人类群体的遗传变异进行分类。尽管大多数遗传变异研究集中于个体之间的单碱基对差异,即单核苷酸多态性(SNP),但最近的一些研究表明,包括拷贝数多态性和倒位多态性在内的大规模结构变异也是常见的。但是,用于检测和验证结构变异的直接技术通常比检测和验证SNP更昂贵。对于某些类型的结构变异,特别是缺失,多态性会在SNP数据中产生明显的特征。在本文中,我们描述了一种从SNP数据中检测缺失多态性的新概率方法。我们方法中的关键思想是,我们估计基因组区域中有或没有缺失可能性的单倍型的频率,并应用广义似然比检验来评估缺失的重要性。将我们的方法应用于HapMap第一阶段数据时,发现319个候选缺失,其中142个与早期研究中发现的变异重叠,而177个是新颖的。使用II期HapMap数据,我们可以预测6730个缺失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号