首页> 外文会议>Recognizing patterns in signals, speech, images, and videos >Information Fusion for Combining Visual and Textual Image Retrieval in ImageCLEF@ICPR
【24h】

Information Fusion for Combining Visual and Textual Image Retrieval in ImageCLEF@ICPR

机译:ImageCLEF @ ICPR中结合视觉和文本图像检索的信息融合

获取原文
获取原文并翻译 | 示例

摘要

In the ImageCLEF image retrieval competition multimodal image retrieval has been evaluated over the past seven years. For ICPR 2010 a contest was organized for the fusion of visual and textual retrieval as this was one task where most participants had problems. In this paper, classical approaches such as the maximum combinations (combMAX), the sum combinations (combSUM) and the multiplication of the sum and the number of non-zero scores (combMNZ) were employed and the trade-off between two fusion effects (chorus and dark horse effects) was studied based on the sum of n maxima. Various normalization strategies were tried out. The fusion algorithms are evaluated using the best four visual and textual runs of the ImageCLEF medical image retrieval task 2008 and 2009. The results show that fused runs outperform the best original runs and multi-modality fusion statistically outperforms single modality fusion. The logarithmic rank penalization shows to be the most stable normalization. The dark horse effect is in competition with the chorus effect and each of them can produce best fusion performance depending on the nature of the input data.
机译:在ImageCLEF图像检索竞赛中,过去七年对多模式图像检索进行了评估。对于ICPR 2010,组织了一场视觉和文字检索融合竞赛,因为这是大多数参与者遇到问题的一项任务。本文采用经典方法,例如最大组合(combMAX),总和组合(combSUM)以及总和与非零分数数量的乘积(combMNZ)以及两种融合效果之间的权衡(合唱和黑马效应)是基于n个最大值的和进行研究的。尝试了各种标准化策略。使用ImageCLEF医学图像检索任务2008和2009的最佳四个视觉和文本运行对融合算法进行评估。结果显示,融合运行优于最佳原始运行,而多模态融合统计上优于单模态融合。对数秩罚分表明是最稳定的归一化。黑马效应与合唱效应不相上下,取决于输入数据的性质,它们各自都能产生最佳融合性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号