首页> 外文会议>Recent advances in signal processing, computational geometry and systems theory >Application of Neural Networks to Speech/Music/Noise Classification in Digital Hearing Aids
【24h】

Application of Neural Networks to Speech/Music/Noise Classification in Digital Hearing Aids

机译:神经网络在数字助听器语音/音乐/噪声分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the development of an automatic sound classifier embedded in a digital hearing aid aiming at enhancing the listening comprehension when the user goes from a sound environment to another different one. The approach we propose in this paper consists in using a neural network-(NN-) based sound classifier that aims to classify the input sound signal among speech, music or noise. The key reason that has compelled us to choose the NN-based approach is that neural networks are able to learn from appropriate training pattern sets, and properly classify other patterns that have never been found before. This ultimately leads to very good results in terms of higher percentage of correct classification when compared to those from other popular algorithms, such as, for instance, the k-nearest neighbor (k-NN) or mean square error (MSE) classifier, as clearly shown in the results obtained in this paper.
机译:本文着重于开发一种嵌入在数字助听器中的自动声音分类器,旨在增强用户从声音环境转到另一个声音环境时的聆听理解力。我们在本文中提出的方法包括使用基于神经网络(NN-)的声音分类器,该分类器旨在对语音,音乐或噪声中的输入声音信号进行分类。迫使我们选择基于NN的方法的关键原因是神经网络能够从适当的训练模式集中学习,并对适当的其他从未有过的模式进行分类。与其他流行算法(例如k近邻(k-NN)或均方误差(MSE)分类器)相比,这最终会导致更高的正确分类百分比,从而获得非常好的结果。本文获得的结果清楚地表明了这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号