首页> 外文会议>Recent advances in signal processing, computational geometry and systems theory >Subject-Independent Emotion Recognition from Facial Expressions using a Gabor Feature RBF Neural Classifier Trained with Virtual Samples Generated by Concurrent Self-Organizing Maps
【24h】

Subject-Independent Emotion Recognition from Facial Expressions using a Gabor Feature RBF Neural Classifier Trained with Virtual Samples Generated by Concurrent Self-Organizing Maps

机译:使用并发自组织图生成的虚拟样本训练的Gabor特征RBF神经分类器根据面部表情进行与主题无关的情绪识别

获取原文
获取原文并翻译 | 示例

摘要

The most expressive way humans display emotions is through facial expressions. This paper is dedicated to the challenging computer vision task of subject-independent emotion recognition from facia! expressions. The original key idea of the proposed model is the increasing of the neural classifier training set size by adding ,,virtual" samples generated with a system of Concurrent Self-Organizing Maps (CSOM). The model consists of the following main processing cascade: (a) Gabor Wavelet Filtering (GVF); (b) dimensionality reduction using Principal Component Analysis (PCA); (c) Radial Basis Function (RBF) neural classifier trained with virtual samples generated by CSOM system (VSG-CSOM). We have evaluated the above proposed model for person-independent facial expression recognition using JAFFE database. One obtains an average recognition score for the test set (leave-one subject out test method) of 69.70%. The advantage of using CSOM-VSG-RBF over a traditional RBF neural classifier means an improvement of recognition score with about 16% (from 53.44% for RBF to 69.70% for VSG-CSOM-RBF).
机译:人类表达情感的最富有表现力的方式是通过面部表情。本文致力于从脸谱上独立于主题的情感识别中具有挑战性的计算机视觉任务!表达式。所提出模型的最初关键思想是通过添加使用并发自组织图(CSOM)系统生成的“虚拟”样本来增加神经分类器训练集的大小。该模型包括以下主要处理级联:( a)Gabor小波滤波(GVF);(b)使用主成分分析(PCA)进行降维;(c)径向基函数(RBF)神经分类器,使用由CSOM系统(VSG-CSOM)生成的虚拟样本进行训练。上面提出的使用JAFFE数据库进行人无关的面部表情识别的模型,一个测试集的平均识别分数(不做任何一项测试)获得69.70%的优势,相比传统的CSOM-VSG-RBF, RBF神经分类器意味着识别得分提高了约16%(从RBF的53.44%到VSG-CSOM-RBF的69.70%)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号