首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Multi-Objective Semi-Supervised Feature Selection and Model Selection Based on Pearson's Correlation Coefficient
【24h】

Multi-Objective Semi-Supervised Feature Selection and Model Selection Based on Pearson's Correlation Coefficient

机译:基于皮尔逊相关系数的多目标半监督特征选择与模型选择

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a Semi-Supervised Feature Selection Method based on a univariate relevance measure applied to a multiobjective approach of the problem. Along the process of decision of the optimal solution within Pareto-optimal set, atempting to maximize the relevance indexes of each feature, it is possible to determine a minimum set of relevant features and, at the same time, to determine the optimal model of the neural network.
机译:本文提出了一种基于单变量相关性度量的半监督特征选择方法,该方法应用于问题的多目标方法。在决定帕累托最优集内最优解的过程中,无需使每个特征的相关性指标最大化,就可以确定相关特征的最小集,同时可以确定最优特征集。神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号